
ABSTRACT

W
e develop a game-theoretic model
called BASTION to guide the
employment of antisubmarine

warfare (ASW) platforms such as ships
and aircraft that are defending a stationary
oceanic bastion from attack by hostile sub-
marines. The model is an example of a two-
person zero-sum game with some additional
variables (ship locations) that are under the
control of the maximizing defender, but
known to the minimizing attacker. The at-
tacker, knowing the ship locations, but not
the locations of other platforms such as
aircraft, must select a path to the bastion.
The probability of detecting the attacker as
it follows this path is the objective shared
by the opponents.

INTRODUCTION
This paper develops a new planning aid

for defensive ASW called BASTION. We en-
visage a Blue battle-group commander with
a set of ASW platforms—these will typically
comprise a group of surface ships, subma-
rines, fixed-wing aircraft, and helicopters—
that are available to search for enemy
submarines. The commander must employ
his forces to protect an HVU (High Value
Unit, typically an aircraft carrier) from en-
emy (Red) submarines. The HVU and possi-
bly some other ships are assumed to lie in
a bastion of protected cells, and the object
of the Red attackers is to penetrate to the
bastion without being detected by Blue.

The Submarine Threat
Modern submarines, both nuclear (SSN)

and diesel-electric (SSK), pose a significant
threat to the U.S. Navy. Technological inno-
vation since World War II has improved
the capabilities of submarines to the point
where Keegan (1986) questions the viability
of surface ships in the face of submarine at-
tacks. Air-independent propulsion now al-
lows SSKs to operate submerged for weeks
at a time, compared to only hours in World
War II. SSNs are even more effective than
SSKs, and improved weapons systems have
greatly enhanced the lethality of both types.
As a result, even a single submarine pos-
sesses the stealth and firepower necessary
to put warships at risk.

More than 40 countries currently oper-
ate submarines, including several countries
with large fleets (Benedict, 2006). Holland
(1991) explains the effect submarine attacks
might have: ‘‘In a conflict with less than a su-
perpower, public or political patience will
run thin concerning losses or delays by sub-
marines. The magnitude of the political ca-
tastrophe arising from the torpedoing of
an aircraft carrier in a limited conflict can
hardly be overestimated.’’

Antisubmarine Warfare Platforms
and Systems

The U.S. Navy uses multiple ASW plat-
forms, including surface ships, aircraft of
various kinds, and SSNs.

A surface ship’s primary ASW sensor is
its sonar, either hull-mounted or towed.
Surface ships also employ radars that are
capable of detecting surfaced submarines,
or even submarine periscopes or masts.
However, the locations of surface ships are
usually detectable by submarines well in
advance of any detection by the ships. In
BASTION, we assume that the locations of
all ships are known by Red when planning
an attacking submarine’s path to the bastion.

All aircraft enjoy the advantage of being
much faster than submarines. Aircraft car-
riers operate MH-60 helicopters that in-
clude ASW among their many missions.
The SH-60 helicopter, operated from cruisers,
destroyers, and frigates, can drop expend-
able sonobuoys, and can also dip a sonar
sensor into the ocean. Land-based maritime
patrol aircraft (MPA) also employ sono-
buoys, but in significantly larger numbers,
and are equipped with a surface search ra-
dar. Every manned aircraft is equipped with
human eyeballs, which remain one of the
most effective ASW sensors. In BASTION
we assume that all aircraft operations are in-
herently stealthy to Red submarines, except
for the complicating feature that Red knows
the locations of the bastion (the source of
MH-60 sorties) and the ship hosts of the
SH-60s.

A battle group typically includes one or
two Blue SSNs. These ‘‘direct support’’ sub-
marines often provide the most effective so-
nar search capability due to their quietness
and their ability to vary search depth to ad-
just to the ocean’s local acoustic conditions.
To prevent conflicts with other Blue platforms,
Blue submarines typically have exclusive
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use of certain regions known as Submarine Op-
erating Areas (SOAs), and do not leave those re-
gions without pressing reasons. The locations of
these SOAs are assumed known to the attacker,
but not the disposition of the SSNs within the
SOAs. Red can infer the location of the SOA,
more or less, from the locations of previous
sub-versus-sub engagements and the lack of ac-
tivity in the area by other Blue forces.

Current Planning Tools for ASW
Missions

The U.S. Navy currently employs a number
of tools for planning ASW missions.

The Personal Computer-Based Interactive Mul-
tisensor Analysis Trainer (PCIMAT), is the pre-
mier ocean acoustic analysis and planning
tool available on all ASW platforms (SPAWAR,
2008). Although employable from a standalone
laptop computer, an implementation of PCIMAT
(the Sonar Tactical Decision Aid, or STDA) inte-
grates its capabilities with a platform’s entire
fire-control system. Among other outputs, STDA
offers a mission-planning module that provides
a graphical representation of a platform’s effec-
tive coverage area.

The ASW Screen Planner Tactical Decision Aid
(SWDG, 2004) aids the planning of ASW screens
for a battle group in transit. The planner spec-
ifies a threat submarine from a database and
proposes assignments of available ASW plat-
forms to sectors surrounding the battle group,
not including MPA. The decision aid then calcu-
lates the probability of detecting the enemy sub-
marine in each sector if it transits that sector in
a straight line. The planner manually assigns
platforms to sectors until he creates a solution
with an acceptable probability of detection.

The Active System Performance Estimate Com-
puter Tool (ASPECT) aids MPA in maximizing
the effectiveness of active sonobuoy search
(FAST, 2006). The planner manually specifies
several sonobuoy patterns, and describes how
Red can be expected to move. ASPECT then
simulates approximately 500 submarine tracks
in the search area, and reports the resulting sam-
ple detection probability for each pattern.

The Operational Route Planner (ORP) models
the area search problem, seeking to identify

routes for search platforms that are most likely
to lead to the detection of an SSK in a specified
area (Kierstead and DelBalzo, 2003; Wagner As-
sociates, 2008). ORP simulates the SSK’s actions
based on a probabilistic description of enemy
behavior. The planner specifies patrol-region
assignments for available search platforms,
and ORP heuristically optimizes search plans
for multiple ASW searchers using a genetic
algorithm.

None of these currently employed systems
synchronously coordinates the actions of mul-
tiple ASW platforms in defense of a bastion.
BASTION is intended to do that.

TWO BACK-OF-THE-ENVELOPE
MODELS

Throughout the development of BASTION,
we have wrestled with whether ASW search
should be modeled as exhaustive or random.
These are the only two viable alternatives, be-
cause our optimization ambitions for BASTION
dictate a simple analytic model of some kind. To
make the issues clear, in this section we outline
two simple models, one based on exhaustive
search and one based on random search. The ex-
act formulation of BASTION, together with the
assumptions behind it, are the subject of the
next section.

For the moment, assume there are only
three searching platform types: ships, subs,
and MPA (helicopters are a special case because
they are based on ships, so we omit them for the
moment). Red knows all ship locations. Blue
subs operate within an SOA that is known to
Red, but otherwise Red does not know their lo-
cations. To prevent interference and even fratri-
cide, Blue insists that only Blue SSNs operate
within the SOA, and that Blue SSNs operate
nowhere else. The bastion is assumed to have
the shape of a circular disc with radius r, and
the surrounding waters are assumed to be
homogeneous.

Exhaustive Search Model
This is a one-dimensional model in which

Blue attempts to make the perimeter of the
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bastion a barrier that Red subs cannot penetrate
without being detected. Define the following
four quantities:

• D ¼ length that can be guarded by ships,
• S ¼ length that can be guarded by SSNs,
• A ¼ length that can be guarded by aircraft,

and
• B ¼ length of bastion perimeter (2pr).

The general idea is that each platform type
is given responsibility for part of the barrier. If
D 1 S 1 A is larger than B, then the entire perim-
eter can be guarded and the detection probabil-
ity is 1. Otherwise, because all points guarded
by ships are known to Red, the SSNs and MPA
must do their best to cover the remaining perim-
eter length B 2 D. Suppose that Blue chooses the
SOA to have length L, with L . S. Because Red
knows where the SOA is located, but not the lo-
cations of the submarines within it, the detec-
tion probability will be S/L if Red penetrates
the SOA, or A/(B 2 D 2 L) if Red penetrates
the MPA part of the barrier (Red will avoid the
ship part because it is completely covered). Blue
should choose L (his only strategic decision in
this model) to make the smaller of these two
quantities as large as possible. As a result, the
detection probability is (S 1 A)/(B 2 D), with
Red being indifferent between the submarine
and MPA parts of the barrier. Note that Blue
pays no penalty for having to reveal the SOA
to Red; as long as he chooses the size of the
SOA judiciously, the payoff is the same as if
the Blue sub length S was simply added to the
MPA length A in the first place. Note also that
Blue does pay a penalty for having to reveal
the ship locations, because the detection proba-
bility is smaller than (D 1 S 1 A)/B.

Our main objections to this model are:

• Most ASW sensors are not of the cookie cut-
ter type. There is no distance R such that de-
tection is certain within R, and nondetection
certain at longer ranges.

• ASW platforms, particularly aircraft, cannot
be assumed to be present all the time, espe-
cially in the face of enemy actions that would
accompany a war in which Red attackers are
attempting to attack Blue HVUs. There are
many reasons for this, one of which is that
so-called ‘‘ASW platforms’’ have other mis-

sions besides searching for Red submarines.
One of them is to engage and kill Red subma-
rines, a separate function.

Considerations such as these have classi-
cally led to the assumption that search is effec-
tively ‘‘random,’’ rather than ‘‘exhaustive’’
(Koopman, 1980). Because this assumption is es-
sential to BASTION, we next outline a random
search model for the current scenario.

Random Search Model
ASW sensors operate in two dimensions

rather than one. For continuously moving sen-
sors such as eyeballs or passive sonars, this
observation has led to the definition of sweep-
width W as the effective width of a cleared strip.
If the platform moves at speed V, the rate of cov-
ering area is VW. If the platform is present only
f of the time, the average rate of covering area is
reduced to fVW. If the target is located some-
where within area A, and if the sensor searches
randomly within A, then the rate of detection
is l ¼ fVW/A. To be precise, detections are
assumed to be a Poisson process with rate l. If
multiple platforms are present, and all are
searching independently at random, then the
detection rates can be summed. These consider-
ations lead to characterizing each platform type
with its total rate of clearing area, rather than
a guardable distance as in the exhaustive model.
Define:

• D ¼ total sweep rate of ships,
• S ¼ total sweep rate of Blue submarines, and
• F ¼ total sweep rate of aircraft.

In the abstract, random search amounts to
distributing confetti over an area in the hope
that some flake will cover the point that repre-
sents the target. Assume that the area is a ring
surrounding the bastion that extends from r to
some larger distance R that Blue controls (see
Figure 1), and that the ring is divided into three
segments, one for each of the three separate
types of Blue platform. The segment areas
should be selected to be proportional to sweep
rates —we omit the proof— and the net effect
of this observation is that we might as well sim-
ply add up the three sweep rates to get the total
sweep rate C ¼ D 1 S 1 F.
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Blue’s plan is essentially to distribute con-
fetti at rate C over a ring that has area p(R2 – r2).
If Red’s penetration speed is U, he will spend
a time (R – r)/U in this ring before arriving at
the bastion. The resulting probability of detec-
tion is just the probability of at least one event
in a Poisson process:

P 5 1 2 exp 2
CðR 2 rÞ

pUðR2
2 r

2Þ

 !

5 1 2 exp 2
C

pUðR 1 rÞ

� �
:

The outer radius R is under Blue’s control,
but must be at least r in order to keep the ring
separate from the bastion. The best value is
R ¼ r, and the resulting detection probability is
P 5 1 2 expð2 C=U

B Þ, where B is the same barrier
length defined earlier. In the limit, Blue distrib-
utes confetti inside a vanishingly small ring. We
might insist that R be larger than r by an amount
that is roughly the detection radius of the Blue
sensors involved. Nonetheless, the essential fact
is that Blue wants to defend a thin ring around
the bastion.

In this model, Blue’s only strategic concern
is to make sure that each platform type is
assigned a part of the ring that is proportional
to its sweep rate. Note that ships pay no penalty
for being visible to Red, because their sweep
rate is just one of the terms in the sum defining
C. This is a significant problem with the random
search model, because ship visibility has impor-
tant consequences in reality (see discussion under
the heading Ships in the next section). Although

BASTION is essentially a generalization of this
model, it makes an exception for ships.

DEVELOPMENT OF BASTION
The U.S. Navy does its bastion planning on

rectangular ‘‘Four-Whiskey’’ (4W) grids with
cells whose sides are typically 5 or 10 nm. Plat-
forms are assigned to cover cells or groups of
cells, but not partial cells. BASTION adopts this
rectangular reference system. Certain cells do
not need to be defended because they are im-
passable to Red attackers (hereafter ‘‘land’’) or
are part of the bastion. All other cells constitute
the traversable set C, and the SOA is a subset of
C. Figure 2 shows a typical categorization in
BASTION.

A Red attacker is assumed to start outside
the grid, and must choose a path to the bastion
consisting of adjacent traversable cells, possibly
including diagonal moves between cells that
share a corner. Red’s object is to get to the bas-
tion without being detected. Blue’s object is to
detect Red before he gets to the bastion, so we
have a two-person zero-sum game. The situa-
tion is assumed to be stochastically stationary,
with no time limit within which Red must act.

The subscripts i and j will index cells in the
grid. We define the area of cell i to be Ai, typi-
cally but not necessarily independent of i.

For modeling purposes, each traversable
cell i in C is connected to each adjacent travers-
able cell j by a directed arc (i, j) in a network

Figure 1. Blue surrounds the bastion with a ring
where he searches randomly.

Figure 2. The grid is a rectangle of cells with lati-
tude and longitude coordinates. Land is crosshatched
and nearly surrounds a white area that Red can tra-
verse. The bastion is horizontally marked, whereas
the SOA is vertically marked. Red enters at the left
border.
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model, i being the tail and j being the head of the
arc. The arcs are the feasible moves for the
attacking Red submarine. Each arc has associ-
ated with it a time tij that represents the amount
of time required for Red to transit between i and
j. These transit times are inversely proportional
to the attacker’s assumed, constant speed, an in-
put to BASTION.

We let Red’s transit begin at an artificial
start cell i1 that lies outside of the grid and con-
nects to all cells through which Red can enter (tra-
versable cells on the grid’s border). Red’s transit
ends at an artificial terminal cell i2 that repre-
sents all cells in the bastion. The detection rate
in the start and terminal cells is 0 by definition.

We denote the full network model as (C, A),
where C denotes the set of traversable cells and
A denotes the set of arcs. We denote Red’s path
through the network as y, a vector of arcs in
which the head of each arc is the same as the tail
of its successor. The tail of the first arc in y is i1,
and the head of the last is i2. We refer to the col-
lection of all of Blue’s ASWassignments as x, and
to the resulting detection rate in cell i as si (x).

When a Red attacker is present in cell i, we
assume that si (x) is the rate of a Poisson process
of detections, even though some of Blue’s assets
(aircraft, in particular) may operate on a sched-
ule that is more regular than Poisson. In this we
are relying on the tendency of point processes to
become Poisson in the presence of complica-
tions. For example, the sum of many indepen-
dent, stationary processes tends to become
Poisson (Khinchin, 1960), and thinning a station-
ary process tends to have the same effect. A pro-
cess of aircraft flights is ‘‘thinned’’ when aircraft
are randomly assigned to patrol in specific cells.
Blue is motivated to choose those cells ran-
domly because he is playing a game with
Red—as long as Red cannot predict the se-
quence of chosen cells, it is not particularly im-
portant if Red can predict the sequence of
takeoffs and landings. In short, Blue’s search
for Red attackers is assumed to be ‘‘random’’.

Let

zðx; yÞ5
X
ði;jÞ2y

tijðsiðxÞ1 sjðxÞÞ=2: (1)

If we assume that half of Red’s time in tran-
siting from i to j is spent in each cell, then z(x, y)
is the average number of times that Red is

detected on his path from i1 to i2. We will refer
to this quantity as the ‘‘pressure’’ that Blue’s de-
fensive efforts place on Red as he attempts to
penetrate through to the bastion. We take this
pressure to be the mean of a Poisson random var-
iable, so the probability of (at least one) detection
is 1 – exp(–z(x, y)). Blue chooses x to maximize
this payoff, while Red chooses y to minimize it.

The total search rate si(x) in cell i is itself the
sum of several components that are determined
by the various platforms under Blue’s command.
There are four platform types in BASTION: sub-
marines (Blue SSNs), land-based MPA, ship-
based helicopters, and the ships themselves.
Each platform type is discussed separately be-
low. The entire Bastion model will then be spec-
ified in detail.

Submarines
Blue submarines operating within an SOA

are the easiest platform to model, at least if their
search is by passive sonar. Let RSi be the detec-
tion rate of a submarine in cell i, normally
obtained by multiplying the speed of the Blue
sub by its sweepwidth and dividing by the cell’s
area, and let xsi be the average number of sub-
marines patrolling in cell i. Then the total sub-
marine detection rate in cell i is RSixsi. If there
are NS Blue submarines in direct support, then
the allocation variables are subject to the con-
straint

P
i2SOA xsi 5 NS.

BASTION has two modes of operation. In
the free mode, SOA is C and all platforms can
operate anywhere. In the constrained mode,
a specific SOA within C is set by the planner,
and only SSNs can be located there.

Land-Based Aircraft (MPA)
An MPA squadron usually describes its ca-

pability in terms of a sortie generation rate GA,
the average number of sorties per hour that
can be launched by the squadron (a sortie is
whatever happens between a takeoff and the
following landing). If there is a difference
between ‘‘surge’’ and ‘‘sustain’’ sortie rates,
then the appropriate one here, because of the
long time horizon envisioned in employing
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BASTION, is ‘‘sustain.’’ Let BAjk be the amount
of area searched in cell j by a sortie assigned to
cell k, divided by the area of cell j. The interpre-
tation of this dimensionless number is ‘‘the av-
erage number of detections if Red is located in
cell j when a sortie is assigned to cell k.’’ Our
idea here is that BAkk will be determined pri-
marily by sonar search considerations, but that
aircraft have a significant eyeball and radar
search capability for exposed periscopes and
surfaced attackers while transiting over cells
other than k. The value for BAjk will typically
be a strong function of cell index k, with cells
far away from the squadron’s base having rela-
tively small values. Determining BAjk from more
fundamental parameters is a significant task that
we defer to Appendix A, taking BAjk as given for
the moment. Let xak be the number of MPA sor-
ties per hour assigned to cell k. The MPA detec-
tion rate in cell j is then

P
k BAjkxak, and the

applicable constraint is
P

k xak 5 GA, where both
sums are over all cells, possibly excepting SOA
if aircraft are forbidden to search in that region.

We use the term ‘‘squadron’’ to mean all
MPA operating from a given base, and will de-
scribe BASTION in the sequel as if only a single
squadron were involved. If multiple squadrons
are actually available, then each would be mod-
eled as a separate asset.

Helicopters
MH-60 helicopters operate from aircraft

carriers, typically located within the bastion,
whereas SH-60 helicopters operate from other
ships located outside the bastion. The effect of
helicopter search is similar to that of MPA, ex-
cept for the mobility of their bases.

To some extent Red can predict helicopter
operations. Consider the operations of MH-60s
from within the bastion. Might Red reason that,
because the aircraft carrier is currently located
in the south edge of the bastion, cells near the
north edge should currently be safe from the at-
tentions of MH-60s? Answering the question in
the affirmative would require introducing an
unwelcome time dimension to BASTION, be-
cause the track of the aircraft carrier(s) would
have to be an input. The movements of aircraft
carriers when launching and recovering aircraft
are notoriously unpredictable, even to Blue, and

Red would have to consider more than the cur-
rent locations in planning his penetration. We
therefore assume that carrier movements within
the bastion are unknown to Red, except for
remaining within the bastion, and that Blue
takes advantage of this ignorance to maximize
the on-station time of MH-60 flights. The com-
putational effect of this in BASTION is that an
MH-60 will always have its on-station endur-
ance calculated as if it were both launched and
recovered from the most favorable point in the
bastion. Except for this flexibility, MH-60s are
handled like MPA. In the case of SH-60s, we as-
sume that the location of their base (a ship lo-
cated outside the bastion) is known to Red. For
all helicopters, we next calculate the area covered
by one sortie and proceed as with MPA. The sor-
tie generation rate GM for MH-60s should be
only those sorties allocated to ASW search.

In the case of SH-60s, additional constraints
are necessary to enforce the idea that a sortie can-
not begin in cell i unless the helicopter’s host oc-
cupies that cell (see formulation below). SH-60s
typically search using a dipping sonar, an active
device that in principle provides information to
Red about the helicopter’s location, and therefore
a basis on which to predict and avoid subsequent
dip locations. However, because helicopters oper-
ate at much higher speeds than submarines, the
effect of this information is ignored in BASTION.

Ships
Ships are the most difficult ASW platform to

model. All other platforms are sufficiently fast
or well hidden that Red cannot predict their ex-
act locations when planning his route to the bas-
tion, but this is not true for ships. Ships reveal
their locations in several ways: they are large
surface vessels, and therefore subject to obser-
vation by eyeball and radar; they operate radars
themselves, which are subject to intercept; their
engines are noisy, which permits submarines to
determine bearing at considerable distance. Fi-
nally, ships sometimes operate powerful active
sonars, the signals from which can be intercep-
ted at long distances by submarines. For these
reasons, ships are the only platforms whose lo-
cations are assumed to be known to Red before
planning his penetration route. This is accom-
plished in BASTION by requiring the variables
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xfmi denoting the presence of ship m in cell i to
be either 0 or 1 (binary). This necessity forces
BASTION to be a Mixed Integer Program
(MIP), rather than a linear program.

In spite of their locations being known to
Red, ships can still be effective ASW search plat-
forms. BASTION currently models a ship’s de-
tection rate as a Gaussian plume of the form
lexp(–(r/R)b), where r is the distance from the
ship, l is the maximum possible detection rate,
R is a relaxation distance, and b is a shaping con-
stant. The connection between the (l, R, b) pa-
rameters and more fundamental parameters
such as ship speed and sonar range is tenuous,
especially for a platform whose location is
known by the target that it seeks. Washburn
(2010a) is relevant, but not definitive. By making
l and b large, one can implement the idea that
the ship controls a disk with radius R that Red
will not challenge. This could easily be general-
ized to model noncircular regions of control,
such as those provided by PCIMAT or STDA.

Let Smij be the detection rate in cell j of ship
m located in cell i, obtained by substituting rel-
evant parameters into the Gaussian plume
model. The total rate of detection in cell j due
to ships is then

P
m;i Smijxfmi. Note that ships

are the only platforms modeled individually;
all other platforms are modeled as aggregations
of identical units. The resulting proliferation of
ship indices is necessitated by Red’s informa-
tion advantage, but is also useful because ships
differ significantly from one another. The fact
that xfmi is required to be binary usually means
that the detection rate will be wastefully high
near the ship’s location, but Blue cannot avoid
this because the ship’s location is known to
Red.

After accumulating the sweep rates from all
platforms in cell i, we have the total detection
rate si(x) as a linear function of x for all i, and
therefore (using (1)) the detection probability
1 – exp(–z(x, y)). We are dealing with a two-
person zero-sum game in which the payoff
function is a concave function of x, while x (ex-
cept for the integer variables representing ship
locations) is constrained to lie in a compact set.
Therefore (Washburn, 2003) Blue has an optimal
pure strategy, and the value of the game is maxx

miny (1 – exp(–z(x, y))). Although the detection
probability is our ultimate concern, the pressure

z(x, y) itself will suffice for an objective function
because the transformation from pressure to de-
tection probability is strictly increasing. The ob-
ject is therefore to find maxx miny z(x, y), the
largest pressure that Blue can guarantee against
the worst-case path. This value and Blue’s opti-
mal pure strategy x can be obtained by solving
a MIP with variables (x,v), where v is the maxi-
mal pressure. If we let X represent the set of fea-
sible Blue defensive allocations (we will specify
X in detail later) and Y represent the finite set of
feasible Red paths, this program can be com-
pactly expressed as MIP0:

max v

subject to zðx; yÞ2 v $ 0; for all y 2 Y

x 2 X:

The difficulty with MIP0 is that the set Y
does not scale well—the number of feasible
paths increases rapidly with the number of cells.
It would be better if there were a constraint for
every arc in A, rather than one for every feasible
path in Y. The first step in finding such a revision
is to define variables uij that indicate whether
arc (i, j) is in Red’s path (uij ¼ 1) or not
(uij ¼ 0). In terms of those variables, zðx; yÞ5P
ði;jÞ2A tijðsiðxÞ1 sjðxÞÞ=2

� �
uij. This expression

replaces the reference to Y in MIP0 with a ref-
erence to A. Following standard techniques
(Fulkerson and Harding, 1977), MIP0 can then
be shown to be equivalent to MIP1 with vari-
ables (x, v) . MIP1 is:

max vi
2

subject to vj # vi 1 tijðsiðxÞ1 sjðxÞÞ=2;

for all ði; jÞ 2 A; and for all x 2 X:

In MIP1 there is one variable vi for every cell
i in C and one constraint for every arc in A, in ad-
dition to the variables x and the set X that con-
strains them. It is permissible to take vi 1 5 0,
in which case vi can be interpreted as ‘‘the min-
imal average number of detections up to and in-
cluding cell i on any path that starts in cell i1,
given x.’’ Variable vi 2 is the desired maximal
pressure, and the detection probability is
1 2 exp 2 vi

2ð Þ. Note that Red’s path is not ex-
plicitly represented in MIP1.

In moving from MIP0 to MIP1, we have
exploited the fact that z(x, y) is a sum, and this
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analytic form is the case because we have
assumed that various search processes are inde-
pendent of each other. Without these indepen-
dence assumptions, we would have to retreat
to a model like MIP0 where the paths are
enumerated.

The precise specification of X is in the sum-
mary formulation below. In that formulation,
‘‘cell’’ means traversable cell in C, unless artifi-
cial cells are explicitly included in the com-
ments. All variables are nonnegative and real,
except for xfmi.

BASTION formulation

Indices and sets [;cardinality]

i 1 and i 2 Artificial start and end cells for Red’s path
i; j; k 2 C Traversable cells [;500]
m Ships [;10]
ði; jÞ 2 A Directed arcs, assumed sufficient to permit at least one path from i 1 to i 2

SOA Traversable cells that constitutes the SOA, a subset of C
NSOA Traversable cells that can be occupied by non-submarines, a subset of C

Data [units]
Smij Detection rate in cell j of ship m located in cell i [/hr]; i 2 NSOA; j 2 C
GHm SH-60 sortie rate by ship m [/hr]
GM MH-60 sortie rate from the bastion [/hr]
GA MPA sortie rate [/hr]
BHmijk Average detections in cell j by a SH-60 sortie to cell k from ship m located in cell i;

i; k 2 NSOA; j 2 C
BMjk Average detections in cell j by a MH-60 sortie to cell k; i; k 2 NSOA; j 2 C
BAjk Average detections in cell j by an MPA sortie to cell k; k 2 NSOA; j 2 C
NS Number of SSNs in direct support
RSj Detection rate of an SSN in cell j [/hr]; j 2 SOA
tij Time required for an attacker to move from i to j [hr], artificial cells included

Variables [units]
xfmi 1 if ship m is located at cell i; 0 otherwise, i 2 NSOA
xhmik Rate of SH-60 search sorties to cell k from ship m in cell i; i; k 2 NSOA[/hr]
xmk Rate of MH-60 search sorties to cell k; k 2 NSOA[/hr]
xak Rate of MPA sorties to cell k 2 NSOA[/hr]
xsj Average number of SSNs searching in cell j; j 2 SOA
sj Total detection rate in cell j [/hr]
vi Average detections up to cell i on a path that starts in i1, artificial cells included

Constraints fdual variablesgX
i2NSOA

xfmi 5 1 Each ship m selects a cell to occupy

X
k2NSOA

xhmik 5 GHmxfmi Helicopter sortie generation limits for all m
and i fdhmig

X
i2NSOA

xai 5 GA MPA sortie generation limit fdag
X

i2SOA

xsi 5 NS Overall SSN population limit fdsg

sj 5
X

i2NSOA;m

Smijxfmi 1
X

i;k2NSOA;m

BHmijkxhmik 1
X

k2NSOA

BMjkxmk 1
X

k2NSOA

BAjkxak 1RSjxsj for all j

vj # vi 1 tijðsi 1 sjÞ=2; for allði; jÞ 2 A Including artificial cells f2yijg
vi 1 5 0 Path starts out with no detections
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Objective

Maximize vi 2 , the average number of detec-
tions up to the bastion.

All dual variables referenced above should
be thought of as the dual variables of a linear
program with the integer variables fixed at their
optimal values. Thus dhmi is of no interest for
cells i that ship m does not occupy, because it
represents the incremental value of SH-60 sor-
ties from a cell where there is no place to take
off or land, a concept of little interest to helicop-
ter pilots. If ship m occupies cell i, then dhmi is
the incremental value of sorties from that ship.
The dual variables of the value constraints are
of interest because yij can be interpreted as the
probability that Red includes arc (i, j) in his
path. In principle, an optimal path selection
strategy for Red could be derived from them
(Ahuja, Magnanti, and Orlin, 1993; Washburn
and Wood, 1995). Although we have scant inter-
est in that mixed strategy, Red’s probabilities are
still of diagnostic value.

EXAMPLES AND COMPUTATIONAL
RESULTS

Standard scenario
All examples considered in this section are

variations of the standard scenario described
below. The platform details will be completely
specified here only for Blue submarines (see Ap-
pendices A and B for the rest).

In all cases we employ a 26 3 26 grid of
cells, although only part of the grid will be
shown in the figures below. The cell width is L
¼ 10 nm. There are NS ¼ 2 submarines in direct
support, each of which has a speed of V ¼ 5 kt
and a sweepwidth of W ¼ 5 nm. Red’s speed
is assumed to be U¼ 5 kt. We assume that Blue’s
velocity will at most times be perpendicular to
Red’s, so we take the relative speed between the
two platforms to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 1 V2
p

. Direct support
submarines are assumed to be available for search
only 90% of the time, so the detection rate of a Blue
submarine patrolling in an arbitrary cell i is

RSi 5 ð0:9Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U

2
1 V

2
p

W=L
2

5 0:3182=hr:

There is one MPA squadron generating sor-
ties at the rate of 0.1/hour, 24 hours per day. A
given MPA sortie will be most effective in the
northwest part of the grid, because the base is
located in that direction. MPA and helicopter
sorties are assumed effective only in the cells
to which they are assigned; that is, the possibil-
ity of Blue’s detecting Red while Blue is in tran-
sit is ignored.

There are two ships, named s5 and s6, each
of which has an effective detection range of
about 15 nm, not considering its helicopters.
The model of ship effectiveness used is in Ap-
pendix B, a ‘‘Gaussian plume’’ that decreases
gradually over the effective range. A ship is
the only platform capable of detection in cells
other than the cell it occupies.

Verification Examples
In our first example we assume that only

submarines are available to defend the bastion.
Figure 3 shows the bastion as a single cell sur-
rounded by eight cells with p or q written in
each, except that the p and q symbols are skip-
ped in two cells containing arrows.

The back-of-the-envelope random search
model introduced earlier suggests that the ideal
way to protect the bastion is to form a ring
around it as narrow as possible, the eight illus-
trated p/q cells. Let q be the average number
of SSNs patrolling in each of the four corner
cells, and define p similarly for the other four.
The corner cells require less pressure than the
others because Red has to spend more time in
them on his way to the bastion. To penetrate
through a p cell, as illustrated with arrows in

Figure 3. The bastion is a single cell surrounded by
eight cells that Blue defends. Two possible paths for
Red are illustrated with arrows.
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Figure 3, Red must spend L/U hours. To pene-
trate through a q cell, Red must spend 0.5 L/U
on the way in, and 0:5

ffiffiffi
2
p

L=U on the way out,
a total of 0:5ð1 1

ffiffiffi
2
p
ÞL=U hours (taking the diag-

onal route into the q cell would unnecessarily in-
crease the transit time, but Red has no choice
but to take the diagonal route out). To equalize
the pressure on all Red routes into the bastion,
the ratio of p to q should therefore be
p=q 5 0:5ð1 1

ffiffiffi
2
p
Þ ffi 1:2. Because we also have

4p 1 4q ¼ NS ¼ 2, we can solve these two equa-
tions for p and q. The maximized minimal aver-
age number of detections will then be z ¼
p(RSi)L/U. With parameters as specified in the
default scenario, this quantity is 0.1740.

Figure 4 shows a formulation and solution
of this problem in BASTION. The problem is
shown as one of protecting a bastion located in
a large bay, but the only purpose of all the land
is to limit the size of the MIP, which would be
much larger if all of the ‘‘land’’ were converted
to traversable cells. As long as Blue does not
choose to exert pressure in any cell bordering
land, as is the case in the solution shown by
the 1 marks, the configuration is effectively
open ocean. The BASTION objective function
agrees exactly with the analysis given above,
but the solution does not—submarines patrol
in four unanticipated additional cells. BASTION
has discovered an alternative optimal solution
where Red could move into a p cell diagonally
and still be detected exactly z times, just as he
could using the two routes portrayed in Figure

3. Because the achieved z is the same as in the an-
alytic solution given above, we take this as evi-
dence that BASTION performs as intended.

Consider next a scenario (not illustrated) in
which the only available platforms are MPA,
and all cells are land except for a 7 3 2 set lo-
cated near the western border. The seven cells
actually on the border are traversable, whereas
the seven cells just to the east are the bastion.
The optimal solution has the MPA presence in
the seven traversable cells increasing from north
to south, which at first seems odd because MPA
sorties are more effective in the north (the MPA
base is in the northwest). However, this ten-
dency to search mostly where one is least ef-
ficient is a known characteristic of game
theoretic solutions to search problems, so we
take this to be further evidence of verity. By em-
phasizing cells in the south, the MPA make Red
indifferent among seven paths to the bastion.

SOA Selection Example
BASTION can be used as an aid in locating

an SOA. Figure 5 shows an example where the
bastion has been located north of a continent
and south of two islands, hoping to take advan-
tage of considerable land in the proximity. The
SOA has been located between the continent
and the eastern island in the hope that other
forces will seal off the western approach and
the strait between the islands. The optimal solu-
tion is also partially shown in Figure 5, using s5
and s6 to locate the two ships and 1 to indicate
activity by MPA and helicopters.

The solution may appear odd. Note that
Red can pass between the islands without fear
of detection by aircraft, as long as he stays to
the west, and that there appears to be a large
gap between s6 and the north edge of the conti-
nent. The gap is illusory, however, because s6 is
capable of long-range detections, and Red gains
nothing by passing between the islands.

Blue’s strategy might be called ‘‘protect the
west with ships and make Red pay for getting to
the east of the bastion.’’ The MPA activity along
the north edge of the continent protects against
Red’s making an end run around s6 to get east.
The submarine activity within the SOA also
blocks access from the east. The maximized ob-
jective function is 0.3213.

Figure 4. BASTION finds an optimal solution for
the same situation as in Figure 3, but with unexpected
positive allocations in the cells labeled ;.
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There is a strategic question in situations
such as that depicted in Figure 5. Should one
seal off the region by protecting the various
gaps between land masses, or just retreat to sur-
rounding the bastion with search activity, as one
would in the open ocean? The pictured SOA
almost enforces the former viewpoint, because
submarines are dedicated to protecting one of
the gaps. To explore which viewpoint is cor-
rect, one can simply delete the SOA and run
BASTION in its free mode. Doing so in this case
reveals a solution in which all search platforms
retreat to surrounding the bastion, with an in-
crease in the objective function to 0.3545. Al-

though this increase would probably not be
large enough to make Blue feel comfortable, it
is still a significant improvement. The free solu-
tion has submarines and other platforms being
jointly active in some cells, but an objective nearly
as large can be found by locating the SOA approx-
imately where the submarines are located in the
free solution. Figure 6 shows the result. The objec-
tive function decreases slightly to 0.3420. Note
that the SOA is not a connected region in Figure
6. Making it connected would enforce an addi-
tional decrease in the objective function.

We have found various graphics to be of use
in debugging and understanding some of the

Figure 6. A better, albeit unconnected, SOA than the one shown in Figure 5. Cell boundaries omitted for clarity.

Figure 5. The SOA is located in the east, expecting to block access from that direction. The optimal solution has
two ships located as pictured, with aircraft activity shown by 1 marks.
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plans produced by BASTION. One of them is
shown in Figure 7, a plot for the same scenario
shown in Figure 6 that shows vi in the various
cells. As Red approaches the bastion, regardless
of the path chosen, he must pay a higher and
higher price to achieve proximity.

Computational Comments
The most computationally stressful situa-

tion would seem to be when there is no land,
the bastion consists of a single, central cell,
and there is no SOA to limit the activities of
any platform. Such a case generates an instance
with 915,302 decision variables, 1,350 of these
binary, and 6,548 constraints. On a Lenovo
T510 laptop, problem generation in GAMS
(GAMS, 2008) requires about six minutes, and
optimization with CPLEX 12.2 (ILOG 2007)
MIP to a 0.1% integrality gap requires about
1.5 GB of memory and three minutes. However,
it turns out that there are problems with fewer
decision variables that are much more difficult,
especially if we insist on a pure optimal (i.e., 0%
gap) solution as we have done for the examples
reported above. We have found examples re-
quiring hours, rather than minutes, including
the just-discussed SOA examples.

CAVEATS AND EXTENSIONS
We have made many assumptions and

approximations in the course of developing

BASTION, some of which are at odds with
reality. In this section we describe some of
these difficulties, suggest remedies, and also
suggest how BASTION might be modified or
extended.

Ship Difficulties
All platforms engaged with defending the

bastion will have missions other than ASW,
but the conflict between objectives is likely to
be greatest for ships, which have important
roles in command and control, power projec-
tion, surface defense, and air defense. Ship loca-
tions that are optimal for ASW may very well
limit the ship’s effectiveness in other roles. The
only remedy that retains BASTION’s role as
a strictly ASW tool is to allow the planner to lo-
cate the ships as he wishes, using BASTION to
plan the employment of other assets to fill in
the ASW capability around whatever the ships
are able to offer. This is easily done, and even
has the benefit of reducing BASTION to a linear
program, rather than a MIP. BASTION’s ability
to optimize ship locations still serves to quantify
the sacrifice that ASW must make to the other
roles.

Another difficulty is that we have not
found a simple model that can quantify a ship’s
detection rate in terms of more fundamental
quantities such as speed and detection range,
whether through the Gaussian plume model
or any other. We are still looking.

Figure 7. This figure shows 100vi, rounded to the nearest integer. The bastion has 34 written in it because the
objective function is 0.3420. The other cells show how detections accumulate as Red approaches the bastion. Cell
boundaries omitted for clarity.
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MPA Difficulties
We earlier argued that si(x) should be taken to

be the mean of a Poisson process, but there are
some features of ASW that make the assumption
problematic. Chief among these is the ‘‘pulse
problem’’ that arises when platforms concentrate
ASW effort in time and space. This is especially
true of MPA. When the cell dimension L is small,
a single MPA sortie can quickly cover an area that
is much larger than that of the sortie’s assigned
cell. If Red is unfortunate enough to be in the cell
at the same time as the sortie, he will surely be
detected, but otherwise Blue will wish that he
had some way of spreading all that confetti over
multiple cells to avoid overcoverage. Except for
ships, BASTION analytically permits Blue to do
exactly that by using infinitely divisible allocation
variables, but how can BASTION’s results about
sortie allocation be used to provide practical
guidance to MPA? We suggest two possibilities.

One way to ‘‘fix’’ the pulse problem is to let
the MPA squadron itself solve it. The squadron
is not given a grid showing the rate of flying sor-
ties to various cells, which would be the direct
output from BASTION. Instead, the BASTION
output to the squadron is a grid showing the
fraction of area covered that is in each cell, sym-
bolically faj [

P
k BAjkxak=

P
j;k BAjkxak, together

with advice to ‘‘Fly as many sorties as you
can, and make it so that cell j gets a fraction faj

of the total area searched.’’ Note that the numer-
ator of this fraction is the only occurrence of the
variables xak in the objective function. This less-
specific advice leaves it to the squadron to for-
mulate missions and fly sorties. The underlying
assumption is that the squadron will find some
way of (nearly) retaining the efficiency of the
single-cell sorties used in BASTION, while si-
multaneously avoiding overcoverage. As long
as this assumption is correct, BASTION can be
a useful operational tool without dealing di-
rectly with MPA tactics.

Another way to fix the pulse problem is by
assigning platforms to missions, rather than
cells, a mission being a sequence of cells to-
gether with a detailed program of activity in
each visited cell. In this manner a large pulse
of covered area can be spread out over enough
cells to prevent overcoverage in any given cell.
This method has the advantage that the activi-

ties suggested by the optimal solution will al-
ways be reasonable because only reasonable
activities (missions) are considered in the first
place. It is certainly implementable—one merely
has to let the index i on xai. refer to a larger set of
missions than those that are named for a single
cell. We have experimented with this success-
fully (Thomas 2008, Pfeiff 2009); however, it must
be employed carefully. The number of missions
is potentially enormous, and also BASTION
has a tendency to prefer missions that overcover
a small number of cells, whether those missions
are realistic or not. Indeed, if the mission set in-
cludes all single-cell missions, then BASTION
will exclude all others in its optimal solution
(see Appendix C for a proof of this). Thus care
must be exercised to provide a rich set of mis-
sions, all of which avoid overcoverage. Because
overcoverage is a gradual phenomenon, rather
than a sudden one, and given BASTION’s ten-
dencies, construction of a good multicell mission
set is problematic. For the moment, BASTION
manipulates only single-cell missions.

SOA (SSN) Difficulties
BASTION currently models SSNs as a class,

just like aircraft, but there are good reasons for
modeling them individually. Like ships, they
tend to be present in small numbers and have
much lower speeds than aircraft. We have ex-
perimented with individual SSNs, and rather
than require SOAs as input, to recommend SOAs
by specific assignment of these SSNs to cells. We
can optimally partition search cells into a number
of SOAs. Each SOA can be planned to be patrolled
by some number of SSNs (say, one or two each),
these patrols can be planned to invest some mini-
mum and maximum search pressure in each cell,
and the diameter of each SOA can be limited. Em-
pirically, these embellishments do not noticeably
add computational effort to the optimization. Sim-
ilar means could be employed to shape patrol
areas for MPA, but we have not implemented this.

Multiple SSKs
Throughout we have referred to ‘‘the’’ pen-

etrating Red SSK. If there are actually several Red
SSKs, the same analysis applies as long as the
penetration attempts are well separated in time.
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However, Red has every motive to locally over-
whelm Blue’s defenses by making multiple, si-
multaneous penetration attempts. The fraction
of successful penetrations in that case could
substantially exceed the detection probability
predicted by BASTION. We view the task of
modifying BASTION to account for cooperative
Red penetration tactics as formidable, and have
no plans to do so.

If Red possesses multiple types of subma-
rines, then Blue should plan against the worst
of them.

The 4W Grid May Be an
Unsupportable Historical Artifact

The square search regions of U.S. Navy 4W
grids may have been historically easy to specify
by boundary coordinates, but they complicate
estimates of search effectiveness that tend to
be circular, rather than rectilinear. The tessel-
lated hexagonal region used by many land war-
fare models appeals here.

Given the introduction of new, long-range
submarine-launched antiship weapons, we antici-
pate the operational necessity to increase the num-
ber of cells that have traditionally been employed
to enable patrol of much greater sea-space.

Scaling Up for Larger Numbers of
(Unmanned) Search Platforms

Future bastion planning problems may in-
clude scores of high-endurance unmanned heli-
copters, rather than just a few manned ones, and
perhaps more unmanned autonomous subma-
rine searchers. As long as such platforms are
modeled collectively, as all aircraft are currently
modeled in BASTION, this expansion presents
no computational difficulty.

If such unmanned submarine searchers are
viewed as expendable, it is also possible to include
the decision whether each should search passively
(and covertly), or actively (revealing itself at some
risk, but with much enhanced search effective-
ness). Thomas (2008) pursues this embellish-
ment for SSN searchers. BASTION’s treatment
of SSNs does not include this option, implicitly
assuming that an SSN will not search in a man-
ner that would reveal its location.

SUMMARY
BASTION’s function is to help plan the de-

fense of a stationary oceanic segment from attack
by submarines. Blue first locates his ships, and
then the rest of the Blue forces engage in a two-
person zero-sum game with Red. The principal
summary statistic is BASTION’s objective function,
the probability that an optimally arranged Blue de-
fense will detect an optimally operated Red sub-
marine before it can penetrate to the bastion.

Blue’s problem has aspects of an assign-
ment problem in which the various platforms
attempt to accomplish an overall mission while
each platform type does what it is efficient at.
BASTION can partition the action space, pro-
viding guidance to each platform type about
how to best operate cooperatively with the other
platforms. This function is particularly impor-
tant for Blue submarines, where BASTION can
be of use in locating and sizing an SOA.

The capabilities of modern computers and
software permit the solution of realistically
scaled problems in reasonably quick response
times, as we have shown by example.
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APPENDIX A: DETERMINING THE
AREA COVERED BY A GIVEN MPA
SORTIE

We assume that MPA search using fields of
multistatic sonobuoys where some buoys are
sources and some are receivers. Sonobuoys re-
main functional for some time after they are acti-
vated, so there are two modes of detection: a
sonobuoy might detect a submarine as soon as
it is dropped (mode 1) or the moving submarine
might run into it later (mode 2). Sources and re-

ceivers need not be colocated, but, if they are,
the detection radius determines d, one of the in-
puts. This radius will typically depend on the cell
in which the buoys are located. Other required
inputs are listed below with [nominal values]:

• d ¼ detection radius [2 nm];
• D¼ distance from MPA base to cell [1000 nm];
• V ¼MPA transit speed [330 kt];
• U ¼ submarine transit speed [5 kt];
• T ¼MPA endurance [12 hr];
• t ¼ time between sonobuoy fields while on

station [1 hr];
• s ¼ number of sources in a field [8]; and
• r ¼ number of receivers in a field [32].

Washburn (2010b) shows that the equivalent
area covered by a multistatic field containing s
sources and r receivers is a 5 0:8pd2

ffiffiffiffi
rs
p

[160.9
nm2]. Because there is a new sonobuoy field laid
every t hours as long as the MPA is on station,
the mode 1 area covered by one sortie is A1 ¼
a(T – 2D/V)/t [955.3 nm2]. To account for mode
2 detections, we assume that the useful life of
a sonobuoy is t, the same as the time between so-
nobuoy fields, and that the effective diameter of
the region covered is 2

ffiffiffiffiffiffiffiffi
a=p

p
[7.155 nm]. The

area covered by type 2 detections is then the
product of the length of time on station, the sub-
marine speed, and the effective diameter:
A2 5 ðT 2 2D=VÞ2U

ffiffiffiffiffiffiffiffi
a=p

p
[425.0 nm2].

Note that the mode 2 area is proportional to
the submarine speed, whereas the mode 1 area is
independent of submarine speed. A Red subma-
rine that is aware of an aircraft overhead, but
does not know exactly what the aircraft is doing,
would be well advised to slow down. Because
the submarine’s state of awareness is unlikely
to be known with any accuracy by the Blue plan-
ner, this makes the calculation of the mode 2 area
problematic. A conservative planner might ig-
nore the possibility of mode 2 detections.

APPENDIX B: DETAILS OF THE
STANDARD SCENARIO

The standard scenario used for generating
our examples uses the MPA parameters of Ap-
pendix A, except that the distance D is not al-
ways 1,000 nm. Instead, D is the distance to
the relevant cells from an MPA base located
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800 nm west and 900 nm north of the NW cor-
ner of the grid. The MPA sortie generation rate
is 2.4/day.

The cell dimension is L ¼ 10 nm, and Red’s
speed is 5 kt.

Each ship has four parameters, three for the
Gaussian plume plus an SH-60 sortie generation
rate GH. Table 1 shows the data.

Table 1. Ship Parameters

Ship l R b GH

s1 .2/hour 10 nm 2 1.5/day
s2 .1/hour 20 nm 2 1.8/day

MH-60 helicopters are assumed to carry 10
monostatic sonobuoys with a detection radius
of 1 nm. They transit at 150 kt, and have an en-
durance of 3 hours. As long as the center of the
destination cell is within range, an MH-60 can
cover an area of 10p(1 nm)2. Because the cell di-
mension is 10 nm, the average number of times
a Red submarine in the chosen cell will be
detected is 0.314. The bastion generates MH-60
sorties at the rate of 1.6/day.

SH-60 helicopters search by dipping a sonar
with a range of 0.5 nm. Dips occur every 0.5 hour
while the aircraft is on station. Endurance is
4 hours, and transit speed is 150 kt, so the area
covered by a sortie to range r is p(0.5)2(4 – 2r/
150)/(0.5).

Blue SSNs are as described in the ‘‘Develop-
ment of BASTION’’ section.

APPENDIX C: PROOF THAT SIMPLE
SORTIES ARE DOMINANT

The text claims that simple sorties are domi-
nant when a given rate of sortie generation must
be split among missions that include simple sor-
ties. It is equivalent to prove that a given sortie is
dominated by a probabilistic mixture of simple
sorties. Assume, then, that an aircraft is located
at point 0, with endurance T. A collection of m

additional points i is given, with dij being the
time required to fly from i to j. For a given flight,
the aircraft must decide which points (0, ., i,
j, ., 0) to visit, and the amount of time xi to spend
monitoring each point in the flight, subject to the
constraint that

P
i; j di; j 1

P
i xi # T. Mixed strat-

egies are permissible.
Theorem. Assume that the triangle inequal-

ity holds: dij # dik 1 dkj, "i, j, k. Then there exists
a mixture of flights visiting a single cell (simple
flights) that will dominate any flight visiting
multiple cells, in the sense of spending at least
as much time in every cell, on the average.

Proof. For a simple flight visiting cell i, let
the time available for search in cell i be Xi ¼
T – d0i – di0, which without loss of generality
we can assume positive in every cell. Now con-
sider a flight that visits points (0, 1, ., n, 0), in
that order, spending a time xi at point i. Let

x [
Xn

i 5 1

xi:

If the flight is feasible, we must have T $ d 1 x,
where d [ d0,1 1 d1,2 1 . 1 di–1,i 1 di,j11 1 . 1

dn21,n 1 dn,0 is the total time spent in transit. We
will show that this flight is dominated by a par-
ticular mixture of simple flights, in the sense
that the mixture spends at least as much time
at each of the n points, on the average. This is
trivial if x ¼ 0, so assume x . 0.

For 1 # i # n, we have, after multiple ap-
plications of the triangle inequality, d0,i # d0,1 1

d1,2 1 . 1 di21,i and di,0 # di,i11 1 . 1 dn21,n 1

dn,0.
Therefore d0i 1 di0 # d, and, because T¼Xi 1

d0i 1 di0, we have Xi $ x. Let K 5
Pn

i 5 1 xi=Xi.
Then K #

Pn
i 5 1 xi=x 5 1. Now let the probability

that a simple flight of type i is used be yi, with
yi¼ xi/(KXi). It is a simple matter to confirm that
(y1, ., yn) is a probability distribution. But the
expected time spent at point i by this mixed
strategy is yiXi, and K # 1, so the mixture spends
at least xi at point i, on the average. Because i is
arbitrary, this completes the proof. n
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